Splines Are Universal Solutions of Linear Inverse Problems with Generalized TV Regularization

نویسندگان

  • Michael Unser
  • Julien Fageot
  • John Paul Ward
چکیده

Splines come in a variety of flavors that can be characterized in terms of some differential operator L. The simplest piecewise-constant model corresponds to the derivative operator. Likewise, one can extend the traditional notion of total variation by considering more general operators than the derivative. This results in the definition of a generalized total variation semi-norm and of its corresponding native space, which is further identified as the direct sum of two Banach spaces. We then prove that the minimization of the generalized total variation (gTV), subject to some arbitrary (convex) consistency constraints on the linear measurements of the signal, admits nonuniform L-spline solutions with fewer knots than the number of measurements. This shows that nonuniform splines are universal solutions of continuous-domain linear inverse problems with LASSO, L1, or total-variation-like regularization constraints. Remarkably, the type of spline is fully determined by the choice of L and does not depend on the actual nature of the measurements.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Continuous-Domain Solutions of Linear Inverse Problems with Tikhonov vs. Generalized TV Regularization

We consider linear inverse problems that are formulated in the continuous domain. The object of recovery is a function that is assumed to minimize a convex objective functional. The solutions are constrained by imposing a continuousdomain regularization. We derive the parametric form of the solution (representer theorems) for Tikhonov (quadratic) and generalized total-variation (gTV) regulariza...

متن کامل

A numerical Algorithm Based on Chebyshev Polynomials for Solving some Inverse Source Problems

In this paper‎, two inverse problems of determining an unknown source term in a parabolic‎ equation are considered‎. ‎First‎, ‎the unknown source term is ‎estimated in the form of a combination of Chebyshev functions‎. ‎Then‎, ‎a numerical algorithm based on Chebyshev polynomials is presented for obtaining the solution of the problem‎. ‎For solving the problem‎, ‎the operational matrices of int...

متن کامل

Ill-Posed and Linear Inverse Problems

In this paper ill-posed linear inverse problems that arises in many applications is considered. The instability of special kind of these problems and it's relation to the kernel, is described. For finding a stable solution to these problems we need some kind of regularization that is presented. The results have been applied for a singular equation.

متن کامل

Solving a nonlinear inverse system of Burgers equations

By applying finite difference formula to time discretization and the cubic B-splines for spatial variable, a numerical method for solving the inverse system of Burgers equations is presented. Also, the convergence analysis and stability for this problem are investigated and the order of convergence is obtained. By using two test problems, the accuracy of presented method is verified. Additional...

متن کامل

On multiple level-set regularization methods for inverse problems

We analyze a multiple level-set method for solving inverse problems with piecewise constant solutions. This method corresponds to an iterated Tikhonov method for a particular Tikhonov functional Gα based on TV–H 1 penalization. We define generalized minimizers for our Tikhonov functional and establish an existence result. Moreover, we prove convergence and stability results of the proposed Tikh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM Review

دوره 59  شماره 

صفحات  -

تاریخ انتشار 2017